41 research outputs found

    Experimental characterization of the twin-eye laser mouse sensor

    Get PDF
    This paper proposes the experimental characterization of a laser mouse sensor used in some optical mouse devices. The sensor characterized is called twin-eye laser mouse sensor and uses the Doppler effect to measure displacement as an alternative to optical flow-based mouse sensors. The experimental characterization showed similar measurement performances to optical flow sensors except in the sensitivity to height changes and when measuring nonlinear displacements, where the twin-eye sensor offered better performance. The measurement principle of this optical sensor can be applied to the development of alternative inexpensive applications that require planar displacement measurement and poor sensitivity to -axis changes such as mobile robotics.The authors acknowledge the support of the Government of Catalonia (Comissionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa) and the European Social Fund

    An embedded real-time red peach detection system based on an OV7670 camera, ARM Cortex-M4 processor and 3D Look-Up Tables

    Get PDF
    This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second

    A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm

    Get PDF
    This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions

    A mobile robot agent for gas leak source detection

    Get PDF
    Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection.This paper presents an autonomous agent for gas leak source detec-tion. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the in-formation obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.This work was partially funded by the Spanish Ministery of Economy and Competitivity, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica: TEC2011-26143, and by the Government of Catalonia (Comisionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa) and the European Social Fund
    corecore